Coin Change Problem

TypeInput fileOutput fileTime limitMemory limitBatchstdinstdout1 second128 MB

Statement

IOI-chan is planning to visit the mysterious Qubitland. However, the cost of her train ticket to Qubitland is in a superposition of all possible train fares from 1 to N dollars. The currency of Qubitland consists of K types of *quarks*, and the *i*-th quark is worth exactly a_i dollars.

Let f(x) be the minimum number of quarks required to make exactly x dollars. In addition, f(x) = 0 if it is not possible to make exactly x dollars. In order to pay her train fare, IOI-chan wants you to find the sum of all f(i) for every integer i from 1 to N.

Input

The first line of input contains two integers: N and K. The next K lines contain a single integer each. The *i*-th of these lines contains the integer a_i . a_i will be sorted in ascending order.

Output

Output the sum of all f(i) for every integer *i* from 1 to *N*, modulo 998244353.

Sample Input

53 25 420

Sample Output

4

Explanation

f(1) = 0, f(2) = 1, f(3) = 0, f(4) = 2, f(5) = 1. Therefore the answer is 0 + 1 + 0 + 2 + 1 = 4.

Constraints

- $\bullet \ 1 \leq N \leq 10^{18}$
- $1 \le K \le 15$
- $1 \le a_i \le 1000$ for all i
- a_i are unique for all i.

Subtasks

Number	Points	Additional Constraints
1	1	$N \le 10^6 + 69$
2	68	$K \leq 2$
3	31	$K \ge 2$ and $a_{K-1} = a_K - 1$.