Rand

Time Limit Memory Limit

1 second 256 MB

Flavour Text

You find a strange website. All that’s on it is a single text box, asking for a
number.

Number? [submit]

Intrigued, you type in 1729, a rather dull number, and hit submit. After a
moment, a message appears underneath.

Number? 1729_ [submit]

> WA. Correct answer was 1804289383.
You try that number.

Number? _1804289383_ [submit]
> WA. Correct answer was 846930886.

You keep trying numbers, yet each time you get it wrong, and a different number
appears at the bottom. Giving up, you go to bed. That night, you have a very
strange dream, but all you remember in the morning is the number 1681692777.

Number? _1681692777_ [submit]
> AC

In your excitement at the sight of AC, you accidentally refresh the page.

Number? ____ [submit]
>

Devastated, you decide to dedicate the rest of your life to guessing the correct
random number. Of course, the odds aren’t that bad, right?



Problem Statement

Your goal is to guess the number that will be next output by a pseudo-random
number generator (PRNG).

Subtasks, Constraints and Scoring

The code for all of these PRNGs will be included at the end of this document,
and will be identical to their implementations in both the provided grader and
the sample grader.

Subtask Points PRNG name Maximum calls to guess

1 7 stdrand 2

2 11 hashed 2

3 14 xorl6 17
4 25 lcg 4

5 18 xorshift 6

6 25 twister 630

Your score for each subtask will be the minimum score across all testcases for
that subtask in a particular run.

Interface

You must write and submit one file named solution.cpp. This file should begin
with the line #include "grader.h". Further, it should implement the function
solution, which the grader will call.

void solution(int subtask);
The parameter subtask is the subtask number. This function should call guess.
uint64_t guess(uint64_t x);

The parameter x is your guess for the next number. If you guess correctly, the
program exits. Otherwise, it returns the actual next number.

If the number of calls to guess exceeds the limit for that subtask (as specified
above), the program terminates and you score 0.

Experimentation

A sample grader grader. cpp has been provided. The PRNGs implemented in it
are identical to the ones used when judging.



Compilation

If you have grader.h, grader.cpp, and solution.cpp in the same folder, then
you can compile your code with this command:

g++ -DEVAL -02 grader.cpp solution.cpp -o a.out

This will produce an executable called a.out, which you can run with ./a.out.

Input

The sample grader will read a single integer specifying the subtask number.

Sample Session

One possible interaction with the sample grader is shown below:

Grader Student Description
solution(1) The grader calls your code.
guess (0) You guess that the next number
is 0, but the correct answer was
1.

guess returns 1
guess(2) You guess that the next number
is 2, which is correct.

Because you have guessed correctly, the grader prints the number of calls to
guess and exits.

PRNG Code

In all of these excerpts, get_seed represents a function which returns a uniformly
random uint64_t. The return value will likely differ between runs of the program.

stdrand

uint64_t stdrand()
{
static bool first = true;
if (first) {
std: :srand(get_seed());
first = false;



return std::rand();

}
hashed
uint64_t hashed()
{
static std::minstd_rand rng(get_seed());
// what tf 1 just hash it a bunch
return std::hash<size_ t>() (std::hash<size_t>() (std
}
xorl6

uint64_t xori16()
{

static const uint64_t xors[16] = {
2439027017699422455ull,
956324577728359837ull,
17075029054988731193ull,
13935439657867658572ull,
2738998009808390397ull,
16927321616227501175ull,
15324027826987443333ull,
2693103208460067138ull,
8672365398755211411ull,
4002301890179759204ull,
4956872794123058954ul1l,
15390258129442679524ull,
5419499591377217536ull,
13829531770508687522ull,
960949044087312456ul1l,
1950572012865946529ull,

}

static const uint64_t modulo = int(1e9) + 7;

static uint64_t state = get_seed();

static int upto = O;

// advance state

state "= xors[upto];

upto = (upto + 1) % 16;

return state % modulo;

: thash<uint64_t>() (xrng () ));



lcg

uint64_t lcg(Q
{
// initialise state
static const uint64_t m = int(1e9) + 7;
static uint64_t a = (get_seed() % (m/2)) + m/4;
static uint64_t ¢ = (get_seed() % (m/2)) + m/4;
static uint64_t r = get_seed() % m;
// advance
r = (a*xr + ¢) % m;
return r;

xorshift

uint64_t xorshift()

{
static uint64_t state = get_seed();
uint64_t out = state & Oxffff;
state = state - ((state << 11) * 3);
state = (state >> 16) | (state << 48);
return out;

}

twister

uint64_t twister()

{
static std::mt19937 rng(get_seed());
return rng();



	Flavour Text
	Problem Statement
	Subtasks, Constraints and Scoring
	Interface
	Experimentation
	Compilation
	Input
	Sample Session
	PRNG Code
	stdrand
	hashed
	xor16
	lcg
	xorshift
	twister


